CONVENIENCE PLUS SUBCUTANEOUS ADMINISTRATION

LUTALYSE® HighCon injection (dinoprost tromethamine injection) is a high-concentration formula of the proven LUTALYSE Injection (dinoprost injection) used to help improve breeding efficiency in beef and dairy cattle. Like LUTALYSE, LUTALYSE HighCon is approved for use with FACTREL® Injection (gonadorelin injection) to synchronize estrous cycles to allow for fixed-time artificial insemination (FTAI) in lactating dairy cows, for yielding higher pregnancy rates and improved production by improving calving intervals.

Different from LUTALYSE, LUTALYSE HighCon is dosed at only 2 mL/animal, allowing for faster administration, more doses per bottle and less product in each injection site.

<table>
<thead>
<tr>
<th>Dose Volume</th>
<th>IM Route</th>
<th>SC Route</th>
<th>Max. Doses Per Bottle</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUTALYSE HighCon Injection</td>
<td>2 mL</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>LUTALYSE Injection</td>
<td>5 mL</td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

APPROVED FOR SUBCUTANEOUS ADMINISTRATION

LUTALYSE HighCon is the first and only prostaglandin approved by the Food and Drug Administration (FDA) for subcutaneous (SC) administration in addition to intramuscular (IM) administration. A pharmacokinetic study established that SC LUTALYSE HighCon is bioequivalent to IM LUTALYSE®, and injection site assessments showed SC administration to be well-tolerated.

IM research: Based on formulation characteristics and injection site safety trials, the FDA deemed 2 mL IM of LUTALYSE HighCon safe and bioequivalent to 5 mL IM of original LUTALYSE.¹

SC research: A pharmacokinetic study assessed the relative bioavailability and demonstrated clinical equivalence of 2 mL of LUTALYSE HighCon administered SC compared with 5 mL of LUTALYSE administered IM.²

MEET STRICT BQA STANDARDS

Researchers have found that 58% of rounds from dairy carcasses had at least one injection-site lesion.³ Approval for SC administration allows producers and veterinarians to abide by strict Beef Quality Assurance (BQA) and Dairy Animal Care and Quality Assurance (DACQA) standards, which diminishes injection site blemishes and muscle damage compared with the IM administration.

IMPROVED REPRODUCTION WITH FTAI

FTAI with LUTALYSE HighCon and FACTREL can help improve reproductive efficiency. FTAI can help manage breeding and more effectively time ovulation in relation to insemination — taking the guesswork out of reproduction and increasing the opportunities you have for more pregnancies and herd improvement.
5. Where should the subcutaneous injection of LUTALYSE HighCon be administered?
Subcutaneous injection of LUTALYSE HighCon should be administered in front of the shoulder, preferably in the neck region, using the “tent” technique to help ensure the product truly is being administered in the subcutaneous tissue.

6. Are there any changes for the care and handling of LUTALYSE HighCon bottles?
The bottle contents should be used within 12 weeks of first vial puncture. Note that the stopper may be punctured a maximum of 20 times.

FREQUENTLY ASKED QUESTIONS

1. Why did Zoetis introduce LUTALYSE HighCon, a higher concentration of the original LUTALYSE product?
Zoetis is committed to providing new, flexible, on-label solutions to help veterinarians and producers improve reproductive performance. With both LUTALYSE and LUTALYSE HighCon, you now have flexibility to select a prostaglandin that works best for your management needs.

2. What’s the difference between LUTALYSE HighCon and the original LUTALYSE product?
LUTALYSE HighCon is a higher-concentration formula with the same amount of active ingredient per dose (2 mL instead of 5 mL dose and 12.5 mg instead of 5 mg dinoprost/mL).

LUTALYSE HighCon is approved for both subcutaneous and intramuscular administration, while LUTALYSE is approved only for intramuscular administration.

LUTALYSE HighCon is approved for use in dairy and beef cattle but not equine and swine.

3. Will LUTALYSE HighCon change how producers manage synchronization programs?
No, the FTAI approval and protocols remain consistent with LUTALYSE HighCon and LUTALYSE.

4. Will I still be able to use LUTALYSE if I prefer it?
Yes, both LUTALYSE and LUTALYSE HighCon will be available for use in your reproductive program, depending on your preference.

MORE INFORMATION

Learn more about LUTALYSE HighCon along with our other reproductive products and see how our complete Dairy Wellness portfolio can help your operation. Visit DairyWellness.com or contact your veterinarian or Zoetis representative.

IMPORTANT SAFETY INFORMATION LUTALYSE/LUTALYSE HIGHCON: Women of childbearing age and persons with respiratory problems should exercise extreme caution when handling LUTALYSE/LUTALYSE HighCon. LUTALYSE/LUTALYSE HighCon is readily absorbed through the skin and may cause abortion and/or bronchiospasms, therefore spillage on the skin should be washed off immediately with soap and water. Aseptic technique should be used to reduce the possibility of post-injection clostridial infections. Do not administer LUTALYSE/LUTALYSE HighCon in pregnant cattle unless cessation of pregnancy is desired. See full Prescribing Information, attached.

IMPORTANT SAFETY INFORMATION FOR FACTREL: FACTREL is for use in cattle only. See full Prescribing Information, attached.
Factrel® Injection
(gonadorelin injection)

50 mcg gonadorelin per mL (as gonadorelin hydrochloride) Solution for Intramuscular Injection.
For use in cattle only

CAUTION

Federal (USA) law restricts this drug to use by or on the order of a licensed veterinarian.

DESCRIPTION

FACTREL Injection is a sterile solution containing 50 micrograms of synthetic gonadorelin (as hydrochloride) per mL in aqueous formulation containing 0.6% sodium chloride and 2% benzyl alcohol (as a preservative).

Gonadorelin is the gonadotropin releasing hormone (GnRH) which is produced by the hypothalamus and causes the release of the gonadotropin luteinizing hormone (LH) and follicle-stimulating hormone (FSH) from the anterior pituitary. FACTREL Injection has the identical amino acid sequence as endogenous gonadorelin; 5-oxo Pro-His-Trp-Ser-Tyr-Gly-Leu-Arg-Pro-Gly-NH2 with identical physiological activities. The molecular weight of gonadorelin is 1182 with a molecular formula of C55H75N17O13 2HCl. The corresponding values for gonadorelin hydrochloride are 1219 (1 HCl) expressed as C55H75N17O13 2HCl or 1255 (2 HCl) expressed as C55H75N17O13 2HCl.

INDICATIONS FOR USE

For the treatment of ovarian follicular cysts in lactating dairy cows, beef cows, and replacement dairy and beef heifers. The treatment effect of FACTREL Injection when used in lactating dairy cows, beef cows, and replacement dairy and beef heifers is a reduction in the number of days to first estrus.

For use with LUTALYSE® (dinoprost tromethamine injection) Injection to synchronize estrous cycles to allow fixed-time artificial insemination (FTAI) in lactating dairy cows.

DOSAGE

For the treatment of ovarian follicular cysts in lactating dairy cows, beef cows, and replacement dairy and beef heifers: Administer 2 mL of FACTREL Injection as a single intramuscular injection.

For use with LUTALYSE® (dinoprost tromethamine injection) Injection to synchronize estrous cycles to allow fixed-time artificial insemination (FTAI) in lactating dairy cows: Administer 2 to 4 mL FACTREL Injection (100-200 mcg gonadorelin) per cow as an intramuscular injection in a treatment regimen with the following framework:

• Administer the first dose of FACTREL Injection (2-4 mL) at Day 0

• Administer LUTALYSE® (25 mg dinoprost, as dinoprost tromethamine injection) Injection by intramuscular injection 6-8 days after the first dose of FACTREL Injection.

• Administer a second dose of FACTREL Injection (2-4 mL) 30 to 72 hours after the LUTALYSE injection.

• Perform FTAI 0 to 24 hours after the second dose of FACTREL Injection, or inseminate cows on detected estrus using standard herd practices.

Below are three examples of treatment regimens for FTAI that fit within the dosage regimen framework described immediately above:

<table>
<thead>
<tr>
<th>Example 1</th>
<th>Example 2</th>
<th>Example 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 0 (Monday)</td>
<td>1st FACTREL</td>
<td>1st FACTREL</td>
</tr>
<tr>
<td>Day 7 (the following Monday)</td>
<td>LUTALYSE</td>
<td>LUTALYSE</td>
</tr>
<tr>
<td>Day 9 (Wednesday)</td>
<td>2nd FACTREL + FTAI at 48 hours after LUTALYSE</td>
<td>2nd FACTREL 48 hours after LUTALYSE</td>
</tr>
<tr>
<td>Day 10 (Thursday)</td>
<td>FTAI 24 hours after 2nd FACTREL</td>
<td>FTAI 18 hours after 2nd FACTREL</td>
</tr>
</tbody>
</table>

MECHANISM OF ACTION

Follicular cysts are enlarged non-ovulatory follicles resulting from a malfunction of the neuroendocrine mechanism controlling follicular maturation and ovulation. Exogenous administration of agents possessing luteinizing hormone (LH) activity, such as pituitary extracts or human chorionic gonadotropin, often causes ovulation or regression of follicular cysts. FACTREL Injection induces release of endogenous luteinizing hormone (LH) to produce this same effect.

Gonadorelin, through release of LH has been demonstrated to induce ovulation of dominant ovarian follicles present on the bovine ovary during the estrous cycle. Administration of FACTREL Injection has the same effect.

WARNINGS AND PRECAUTIONS

For use in animals only. Not for human use. Keep out of reach of children.

RESIDUE WARNINGS

No withdrawal period or milk discard time is required when used according to labeling.

EFFECTIVENESS

For the treatment of ovarian follicular cysts in lactating dairy cows, beef cows, and replacement dairy and beef heifers:

The treatment effect of FACTREL Injection when used in lactating dairy cows, beef cows, and replacement dairy and beef heifers is a reduction in the number of days to first estrus.

There were no significant differences in days from treatment to conception, frequency of cows conceiving at first or subsequent heats, or conception rates among treated or non-treated control animals, when FACTREL Injection was used alone for treatment of cystic ovaries.

For use with LUTALYSE® (dinoprost tromethamine injection) Injection to synchronize estrous cycles to allow fixed-time artificial insemination (FTAI) in lactating dairy cows:

A field study was conducted to compare control (0 mL FACTREL Injection) to two doses of 2, 3 or 4 mL FACTREL Injection (100-200 mcg gonadorelin) for use with LUTALYSE Injection to synchronize estrous cycles to allow FTAI in lactating dairy cows under field conditions. Cows were examined prior to study start and only clinically normal cows were enrolled. A total of 1142 cows were enrolled at 6 commercial dairies. Cows were assigned randomly in blocks of 4 cows to each of 4 treatment groups consisting of:

Day 0: 2, 3 or 4 mL dose of FACTREL Injection or no injection (Control)
Day 7: 5 mL LUTALYSE Injection (all treatment groups)
Day 9: 2, 3 or 4 mL dose of FACTREL Injection or no injection (Control)
Day 10: Fixed-time artificial insemination

On Day 9 the second dose of FACTREL Injection (cows received the same dose as for first treatment) was given either 48 or 56 hours after the dose of LUTALYSE Injection and FTAI was conducted 24 or 17 hours later, respectively. For control cows FTAI was performed 72 hours after the LUTALYSE Injection dose was administered. All treatment groups had significantly greater pregnancy rates to FTAI than cows administered LUTALYSE Injection alone, and were 17.1, 27.3, 29.1 and 32.2% for cows receiving 0 (Control), 2, 3 or 4 mL FACTREL Injection, respectively.

SAFETY AND TOXICITY

In cows the intramuscular administration of up to 12.5 times maximum recommended dosage (2,500 mcg/day) of FACTREL Injection for 3 days did not affect any physiological or clinical parameter. Likewise, single intramuscular doses of 500 mcg did not interfere with pregnancy. No evidence of irritation at injection site was found in any animal.

A total of 1142 cows were enrolled in the previously noted field study that evaluated the effectiveness of two doses of 2, 3 or 4 mL of FACTREL Injection for use with LUTALYSE Injection to synchronize estrous cycles to allow FTAI in lactating dairy cows. Cows were observed daily for abnormal clinical signs. Over the course of the study there were 148 adverse health events documented in 118 cows. These adverse health events were common conditions in dairy cows (mastitis, lameness and pneumonia) and are not considered related to treatment.

ADVERSE REACTIONS

To report suspected adverse events, for technical assistance or to obtain a copy of the Material Safety Data Sheet (MSDS) contact Zoetis Inc. at 1-888-963-8471. For additional information about adverse drug experience reporting for animal drugs, contact FDA at 1-888-FDA-VETS or online at http://www.fda.gov/AnimalVeterinary/SafetyHealth.

HOW SUPPLIED

FACTREL Injection (gonadorelin injection), 50 mcg/mL is available in 20 mL and 50 mL multi-dose vials (box of one).

STORAGE CONDITIONS

Store at refrigerator temperature 2° to 8° C (36° to 46°F). Use contents within 1 month of first vial puncture.

NADA 139-237, Approved by FDA

Zoetis

Distributed by: Zoetis Inc.
Kalamazoo, MI 49007

Revised: May 2015
40004714A&P
LUTALYSE® Injection (dinoprost injection)

5 mg dinoprostone/mL as dinoprostone tromethamine

Caution: Federal (USA) law restricts this drug to use by or on the order of a licensed veterinarian.

DESCRIPTION

LUTALYSE® Injection (5 mg dinoprostone/mL) is a sterile solution containing the naturally occurring prostaglandin F2 alpha (dinoprost) as the tromethamine salt. Each mL contains dinoprostone tromethamine equivalent to 5 mg dinoprostone as also, benzyl alcohol, 16.5 mg added as preservative. When necessary, pH was adjusted with sodium hydroxide and/or hydrochloric acid. Dinoprost tromethamine is a white or slightly off-white crystalline powder that is readily soluble in water at room temperature in concentrations to at least 200 mg/mL.

INDICATIONS FOR USE

Cattle: LUTALYSE Injection is indicated as a luteolytic agent. LUTALYSE Injection is effective only in those cattle having a corpus luteum, i.e., those which ovlute at least five days prior to treatment. For estrus synchronization in beef cattle and non-lactating dairy heifers, LUTALYSE Injection is intended to be used for cattle. The 30 mL bottle may be used for cattle, swine, or mares.

As with any multi-dose vial, practice aseptic techniques in withdrawing each dose to decrease the possibility of post-injection bacterial infections. Adequately clean and disinfect the vial stopper prior to administration of drug. When necessary, aseptic technique is essential. Each vial is for single use only. Do not use if the glass vial is cracked, chipped, or scratched. Do not use if the rubber stopper is damaged or appears misshapen. Do not refrigerate. Use only under refrigeration when necessary. If the drug contains suspended particles, discard the drug.

Swine: For parturition induction in swine.

Mares: For controlling the timing of estrus in estrous cycling mares.

For difficult-to-breed mares (clinically anestrous mares that have a corpus luteum)

DOSAGE AND ADMINISTRATION

As with any multi-dose vial, practice aseptic techniques in withdrawing each dose to decrease the possibility of post-injection bacterial infections. Adequately clean and disinfect the vial stopper prior to entry with a sterile needle and syringe. Use only sterile needles, and use each needle only once. No vial stopper should be entered more than 20 times. For this reason, the 100 mL bottle should only be used for cattle. The 30 mL bottle may be used for cattle, swine, or mares.

Cattle:

1. For Estrus Synchronization in Beef Cattle and Non-Lactating Dairy Heifers.

LUTALYSE Injection is used to control the timing of estrus and ovulation in estrus cycling cattle that have a corpus luteum. Inject a dose of 5 mL LUTALYSE Injection (25 mg dinoprostone) intramuscularly either once or twice at a 10 to 12 day interval. With the single injection, cattle should be bred at the usual time relative to estrus. With the two injections cattle can be bred after the second injection either at the usual relative to detected estrus or at about 80 hours after the second injection of LUTALYSE Injection. Estrus is expected to occur 1 to 5 days after injection if a corpus luteum was present. Cattle that do not become pregnant to breeding at estrus on days 1 to 5 after injection will be expected to return to estrus in about 18 to 24 days.

2. For Unobserved (silent) Estrus in Lactating Dairy Cows with a Corpus Luteum.

Inject a dose of 5 mL LUTALYSE Injection (25 mg dinoprostone) intramuscularly. Breed cows as they are detected in estrus. If estrus has not been observed by 80 hours after injection, breed at 80 hours. If the cow returns to estrus, breed at the usual time relative to estrus.

Management Considerations: Many factors contribute to success and failure of reproduction management. Several of these factors are important also when time of breeding is to be regulated with LUTALYSE Injection. Some of these factors are:

- a. Cattle must be ready to breed—they must have a corpus luteum and be healthy;
- b. Nutritional status must be adequate as this has a direct effect on conception and the initiation of estrus in heifers or return of estrous cycles in cows following calving;
- c. Physical facilities must be adequate to allow cattle handling without being detrimental to the animal;
- d. Estrus must be detected accurately if timed AI is not employed;
- e. Semen of high fertility must be used;
- f. Semen must be inseminated properly.

A successful breeding program can employ LUTALYSE Injection effectively, but a poorly managed breeding program will continue to be poor when LUTALYSE Injection is employed unless other management deficiencies are remedied first. Cattle expressing estrus following LUTALYSE Injection are receptive to breeding by a bull. Using bulls to breed large numbers of cows in an attempt to manage estrus in heifers will require proper management of estrus in heifers.

3. For Treatment of Pyometra (chronic endometritis) in Cattle.

Inject a dose of 5 mL LUTALYSE Injection (25 mg dinoprostone) intramuscularly.

4. For Abortion in Feedlot and Other Non-Lactating Cattle.

LUTALYSE Injection is indicated for the treatment of pyometra (endometritis) in cattle. This class of drugs should not be administered concurrently. Do not administer to pregnant cattle, unless abortion is desired. Cattle administered a prostegon in estrus may be expected to have a reduced response to LUTALYSE Injection. Do not administer to cows and/or gilt prior to 3 days of normal gestation.

5. For use with FACTREL® (gonadorelin injection) Injection to synchronize estrous cycles and may be in extended diestrus. Following abortion, early fetal death and resorption, or as a result of “ pseudopregnancy”, there may be serum progesterone levels consistent with a functional corpus luteum. Treatment of such mares with LUTALYSE Injection usually results in increased piglet mortality. It is important that adequate records be maintained on (1) the average length of gestation period for the animals on a specific location, and (2) the breeding and projected farrowing dates for each animal. This information is essential to determine the appropriate time for administration of LUTALYSE Injection.

Mares: LUTALYSE Injection is indicated for its luteolytic effect in mares. Administer a single intramuscular injection of 1 mg per 100 lbs (45.5 kg) body weight which is usually 1 mL to 2 mL LUTALYSE Injection. This luteolytic effect can be utilized to control the timing of estrus in estrous cycling and clinically anestrous mares that have a corpus luteum in the following circumstances:

1. Controlling Time of Estrus of Estrous Cycling Mares:

Mares treated with LUTALYSE Injection during diestrus (4 or more days after ovulation) will return to estrus within 2 to 4 days in most cases and ovulate 8 to 12 days after treatment. This procedure may be utilized as an alternative to scheduling the use of stallions.

2. Difficult-to-Breed Mares: In extended diestrus there is failure to exhibit regular estrous cycles which is different from true anestrus. Many mares described as anestrus during the breeding season have serum progesterone levels consistent with the presence of a functional corpus luteum. A proportion of “barren”, maiden, and lactating mares do not exhibit regular estrous cycles and may be in extended diestrus. Following abortion, early fetal death and resorption, or as a result of “ pseudopregnancy”, there may be serum progesterone levels consistent with a functional corpus luteum. Treatment of such mares with LUTALYSE Injection usually results in increased piglet mortality. It is important that adequate records be maintained on (1) the average length of gestation period for the animals on a specific location, and (2) the breeding and projected farrowing dates for each animal. This information is essential to determine the appropriate time for administration of LUTALYSE Injection.

WARNINGS AND PRECAUTIONS

User Safety: Not for human use. Keep out of the reach of children. Women of childbearing age, asthmatics, and persons with bronchial and other respiratory problems should exercise caution when handling this product. In the early stages, women may be unaware of their pregnancies. Dinoprostone tromethamine is readily absorbed through the skin and can cause abortion and/or bronchospasms. Accidental spillage on the skin should be washed off immediately with soap and water.

To report suspected adverse events, for technical assistance or to obtain a copy of the Material Safety Data Sheet (MSDS) contact Zoetis Inc. at 1-888-963-8471. For additional information about adverse drug experience reporting for animal drugs, contact FDA at 1-888-FDA-VETS or online at http://www.fda.gov/AnimalVeterinary/SafetyHealth.

Residue Warnings: No milk discard or preslaughter drug withdrawal period is required for labeled uses in cattle. No preslaughter drug withdrawal period is required for labeled uses in swine. Use of this product in excess of the approved dose may result in drug residues. Do not use in horses intended for human consumption.

Animal Safety Warnings: Severe localized clostridial infections associated with injection of LUTALYSE Injection have been reported. In rare instances, such infections have resulted in death. Severe localized infections are more likely to occur where the injection site is contaminated. In the early stages, women may be unaware of their pregnancies. Use of this product in excess of the approved dose may result in drug residues. Do not use in horses intended for human consumption.
predicted farrowing as an increased number of stillbirths and postnatal mortality may result. In mares, LUTALYSE Injection is ineffective when administered prior to day-5 after ovulation. Mare pregnancy status should be determined prior to treatment since LUTALYSE Injection has been reported to induce abortion and parturition when sufficient doses were administered. Mares should not be treated if they show any signs of parturition or other reproductive disorders of the vascular system, gastrointestinal tract, respiratory system, or reproductive tract.

ADVERSE REACTIONS

Cattle: Limited salivation has been reported in some instances. Swine: The most frequently observed side effects were erythema and pruritus, slight incoordination, nesting behavior, itching, urination, defecation, abdominal muscle spasms, tail movements, hyperpnea or dyspnea, increased vocalization, salivation, and at the 100 mg (10x) dose only, possible vomiting. There were no effects on the electrocardiogram, lasting from 10 minutes to 3 hours, and were not detrimental to the health of the animal. Mares: The most frequently observed side effects are sweating and decreased rectal temperature. However, these have been transient in all cases observed and have not been detrimental to the animal. Other reactions seen have been increase in heart rate, increase in respiration rate, some abdominal discomfort, loco-motor incoordination, and lying down. These effects are usually seen within 15 minutes of injection and disappear within one hour. Mares usually continue to eat during the period of expression of side effects. One anaphylactic reaction of several hundred mares treated with LUTALYSE Injection was reported but was not confirmed.

Contact Information: To report adverse reactions call Zoetis Inc. at 1-888-963-8471.

CLINICAL PHARMACOLOGY

General Biochemical Activity: Prostaglandins occur in nearly all mammalian tissues. Prostaglandins, especially PGE's and PGF's, have been shown, in certain species, to 1) increase at time of parturition in amniotic fluid, maternal placenta, myometrium, and blood; 2) stimulate myometrial activity, and 3) to induce either abortion or parturition. Prostaglandins, especially PGF2α, have been shown to 1) increase in the uterus and blood to levels similar to levels achieved by exogenous administration when administered at the time of term of pregnancy or luteolysis. The injection of PGF2α at a low dose of 0.1 mg/kg from the uterine vein to the ovarian artery (sheep), 3) be related to IUD induced uteral regression (sheep), and 4) be capable of regressing the corpus luteum of most mammalian species studied to date. Prostaglandins have been reported to result in release of pituitary tropic hormones. Data suggest prostaglandins, especially PGE's and PGF's, may be involved in the process of ovulation and gamete transport. Also PGF2α has been reported to cause increase in blood pressure, bronchoconstriction, and smooth muscle stimulation in certain species.

Metabolism: A number of metabolism studies have been done in laboratory animals. The metabolism of tritium labeled dinoprost (‘H PGF2 α) in the rat and in the monkey was similar. Although quantitative differences were observed, qualitatively similar metabolites were produced. A study demonstrated that equimolar doses of ‘H PGF2α Tham and ‘H PGF2α free acid administered intravenously to rats demonstrated no significant differences in blood concentration of dinoprost. An interesting observation in the above study was that the radioactive dose of ‘H PGF2 alpha rapidly distributed in tissues and dissipated in tissues with almost the same curve as it did in the serum. The half-life of dinoprost in bovine blood has been reported to be on the order of minutes. A complete study of parturition or abortion with any exogenous compound may precipitate dystocia, fetal death, retained placenta or death of heifers in the field studies. The smallness of the dose and clinical chemistry parameters measured. Clinically, a slight transitory increase in heart rate was documented. Rectal temperature was elevated about 1.5 °F through the 6th hour after injection with 250 mg dinoprost, but had returned to baseline at 24 hours after injection. No dinoprost associated gross lesions were detected. There was no evidence of toxicological effects. Thus, dinoprost had a safety factor of at least 10X on injection (25 mg luteolytic dose vs. 250 mg safe dose), based on studies conducted in the study of the effects of PGF2α on the cow. At luteolytic doses, dinoprost had no effect on pregnancy. If given to a pregnant cow, it may cause abortion; the dose required for abortion varies considerably with the stage of gestation. Induction of abortion in feedlot cattle at stages of gestation up to 100 days of gestation did not result in dystocia, retained placenta or death of heifers in the field studies. The smallness of the fetus at this early stage of gestation should not lead to complications at abortion. However, induction of parturition or abortion with any exogenous compound may precipitate dystocia, fetal death, retained placenta and/or metritis, especially at latter stages of gestation.

Swine: In pigs, evaluation was made of clinical observations, food consumption, clinical pathologic observations, urinalyses, and gross necropsy observations following treatment with single doses of 10, 30, 50 and 100 mg dinoprost administered intramuscularly. The results indicated no treatment related effects from dinoprost treatment that were deleterious to the health of the animals or to their offspring.

Mares: Dinoprost tromethamine was administered to adult mares (weighing 320 to 485 kg; 2 to 20 years old), at the rates of 0, 100, 200, 400, and 800 mg per mare per day for 8 days. Route of administration for each dose group was both intramuscularly (2 mares) and subcutaneously (2 mares). Changes were detected in all treated groups for clinical (reduced sensitivity to pain; locomotor incoordination; hypergastronomostomy; sweating; hyperthermia; labored respiration), blood (increased cholesterol, total bilirubin, LDH, and glucose), and hematologic (decreased eosinophils; increased hemoglobin, hematocrit, and erythrocytes) measurements. The effects in the 100 mg dose, and to a lesser extent, the 200 mg dose groups were transient in nature, lasting for a few hours to several days. Mares did not appear to sustain adverse effects following termination of the side effects.

Mares treated with either 400 mg or 800 mg exhibited more profound symptoms. The excessive hyperstimulation of the gastrointestinal tract caused a protracted diarreha, slight electrolyte imbalance (decreased sodium and potassium), dehydration, gastrointestinal irritation, and slight lower malfuction (elevated SGOT, SGPT at 800 mg only). Heart rate was increased but pH of the urine was decreased. Other measurements evaluated in the study remained within normal limits. No mortality occurred in any of the groups. No apparent differences were observed between the intramuscular and subcutaneous routes of administration. Luteolytic doses of dinoprost tromethamine are on the order of 5 to 10 mg administered on one day, therefore, LUTALYSE Injection was demonstrated to have a wide margin of safety. Thus, the 100 mg dose gave a safety margin of 10 to 20X for a single injection or 80 to 160X for the 8 daily injections.

Additional studies investigated the effects in the mare of single intramuscular doses of 0, 0.25, 1.0, 2.5, 3.0, 5.0, and 10.0 mg dinoprost tromethamine. Heart rate, respiration rate, rectal temperature, and sweating were measured at 0, 0.25, 0.50, 0.75, 1.0, 1.5, 2.0, 3.0, 4.0, 5.0, and 6.0 hr. after injection. Neither heart rate nor respiration rates were significantly altered (P > 0.05) when compared to contemporary control values. Sweating was observed for 0 of 9, 2 of 9, 7 of 9, 9 of 9, and 8 of 9 mares injected with 0.25, 1.0, 2.5, 3.0, 5.0, or 10.0 mg dinoprost tromethamine, respectively. Sweating was temporary in all cases and was mild for doses of 3.0 mg or less but was extensive (beads of sweat over the entire body and dripping) for the 10 mg dose. Sweating after the 5.0 mg dose was intermediate between that seen for mares treated with 3.0 and 10.0 mg. Sweating began within 15 minutes after injection and ceased by 45 to 60 minutes after injection. Rectal temperature was measured during the interval 0.5 until 1.0, 3 to 4, or 5 hours after injection for 0.25 and 1.0 mg. 2.5 and 3.0, or 5.0 and 10.0 mg dose groups, respectively. Average rectal temperature during the periods of decreased temperature was on the order of 97.5 to 98.6, with the greatest decreases observed in the 10 mg dose group.

Effectiveness

Cattle: For Treatment of Pyometra (chronic endometritis) in Cattle: In studies conducted with LUTALYSE Injection, pyometra was defined as presence of a corpus luteum in the ovary and uterine horns containing fluid but not a conceptus based on palpation per rectum. Return to normal was defined as evacuation of fluid and return of the uterine horn size to 40mm or less based on palpation per rectum at 14 and 28 days. Most cattle that recovered in response to LUTALYSE Injection recovered within 14 days after injection. After 14 days, recovery rate of treated cattle was no different than that of non-treated cattle.

For Abortion of Feedlot and Other Non-Lactating Cattle: Commercial cattle were palpated per rectum for pregnancy in six feedlots. The percent of pregnant cattle in each feedlot less than 100 days of gestation ranged between 26 and 84; 80% or more of the pregnant cattle were less than 150 days of gestation. The abortion rates following injection of LUTALYSE Injection increased with increasing doses up to about 25 mg. As examples, the abortion rates, over 7 feedlots on the dose titration study, were 22%, 50%, 71%, 90% and 78% for cattle up to 100 days of gestation when injected IM with LUTALYSE Injection doses of 0.1 (5 mg), 2 (10 mg), 4 (20 mg) and 8 (40 mg) mL, respectively. The statistical predicted relative abortion rate based on the dose titration data, was about 93% for the 5 mL (25 mg) LUTALYSE Injection dose for cattle injected up to 100 days of gestation.

For use with FACTREL® (gonadorelin injection) Injection to synchronize estrous cycles to allow fixed-time artificial insemination (FTAI) in lactating dairy cows: For a full description of the studies conducted for the use of FACTREL Injection and LUTALYSE Injection, please refer to the labeling for FACTREL Injection.

For Mares: For Difficult-to-Breed Mares: In one study with 122 Standardbred and Thoroughbred mares in clinical anestrus for an average of 58 days and treated during the breeding season, behavioral estrus was detected in 81 percent at an average time of 3.7 days after injection with 5 mg LUTALYSE Injection; ovulation occurred an average of 7.0 days after treatment. Of those mares bred, 59% were pregnant following an average of 1.4 services during that estrus.

HOW SUPPLIED

LUTALYSE Injection is available in 30 and 100 mL vials.

STORAGE, HANDLING, AND DISPOSAL

Store at controlled room temperature 20° to 25°C (68° to 77°F). Protect from freezing.

Zoetis

Distributed by: Zoetis

Kalamazoo, MI 49007

Revised: August 2014
3. For Treatment of Pyometra (chronic endometritis) in Cattle.
 No vial stopper should be entered more than 20 times.
 To entry with a sterile needle and syringe. Use only sterile needles, and use each needle only once.
 • Semen must be inseminated properly.
 • Physical facilities must be adequate to allow cattle handling without being detrimental to
 the animal;
 • Nutritional status must be adequate as this has a direct effect on conception and the
 pregnancy of animals that are not cycling will be unaffected by injection of LUTALYSE HighCon Injection.

 MANAGEMENT CONSIDERATIONS
 • For estrus synchronization in beef cows, beef heifers and replacement dairy heifers
 • For unobserved (silent) estrus in lactating dairy cows with a corpus luteum
 • For abortion in beef cows, beef heifers and replacement dairy heifers
 • For treatment of pyometra (chronic endometritis) in cattle
 • For use with FACTREL® (gonadorelin injection) Injection to synchronize estrous cycles
 • For use with EAZI-BREED™ CIDR® (progesterone intravaginal insert) Cattle Insert for synchronization of estrus in suckled beef cows and replacement beef and dairy heifers, advancement of first postpartum estrus in suckled beef cows, and advancement of first postparturial estrus in beef heifers

 DOSAGE AND ADMINISTRATION
 • As with any multi-dose vial, practice aseptic techniques in withdrawing each dose to decrease the possibility of post-injection bacterial infections. Adequately clean and disinfect the vial stopper prior to entry with a sterile needle and syringe. Use only sterile needles, and use each needle only once. No vial stopper should be entered more than 20 times.
 • For Estrus Synchronization in Beef Cows, Beef Heifers and Replacement Dairy Heifers.
 LUTALYSE HighCon Injection is used to control the timing of estrus and ovulation in estrous cycling cattle that have a corpus luteum. Inject a dose of 2 mL LUTALYSE HighCon Injection (25 mg dinoprost) intramuscularly or subcutaneously either once or twice at a 10 to 12 day interval. With the single injection, cattle should be bred at the usual time relative to estrus. With the two injections cattle can be bred after the second injection either at the usual time relative to detected estrus or at 80 hours after the second injection of LUTALYSE HighCon Injection. Estrus is expected to occur 1 to 3 days after injection if a corpus luteum was present. Cattle that do not become pregnant to breeding at estrus on days 1 to 5 after injection will be expected to return to estrus in about 18 to 24 days.
 • For Unobserved (Silent) Estrus in Lactating Dairy Cows with a Corpus Luteum.
 Inject a dose of 2 mL LUTALYSE HighCon Injection (25 mg dinoprost) by intramuscular or subcutaneous injection. Breed cows as they are detected in estrus. If estrus has not been observed by 80 hours after injection, breed at 80 hours. If the cow returns to estrus, breed at the usual time relative to first estrus.
 • For Treatment of Pyometra (chronic endometritis) in Cattle.
 Infect a dose of 2 mL LUTALYSE HighCon Injection (25 mg dinoprost) by intramuscular or subcutaneous injection.

 INDICATIONS FOR USE
 • LUTALYSE® HighCon Injection (12.5 mg dinoprost/mL) is a sterile solution containing the naturally occurring prosta glandin F2 alpha (dinoprost) as the tromethamine salt. Each mL contains dinoprost tromethamine equivalent to 12.5 mg dinoprost; also, benzyl alcohol, 16.5 mg added as preservative and water for injection. When necessary, pH was adjusted with sodium hydroxide and/or hydrochloric acid. Dinoprost tromethamine is a white or slightly off-white crystalline powder that is readily soluble in water at room temperature in concentrations to at least 200 mg/mL.

 WARNINGS AND PRECAUTIONS
 • User Safety:
 Not for human use. Keep out of the reach of children. Women of childbearing age,
 • Usage in cattle. Use of this product in excess of the approved dose may result in drug residues.
 • Residue Warnings:
 No milk discard or preslaughter drug withdrawal period is required for labeled

 6. For use with EAZI-BREED™ CIDR® (progesterone intravaginal insert) Cattle Insert for Synchronization of Estrus in Lactating Dairy Cows:
 • Administer one EAZI-BREED™ CIDR Cattle Insert per animal and remove 7 days later (for example, if administered on a Monday remove the following Monday).
 • Administer a dose of 2 mL LUTALYSE HighCon Injection (25 mg dinoprost) by intramuscular or subcutaneous injection at the time of removal of the EAZI-BREED CIDR Cattle Insert.
 • Observe animals for signs of estrus on Days 2 to 5 after removal of the EAZI-BREED CIDR Cattle Insert and inseminate animals found in estrus following normal herd practices.

 7. For use with EAZI-BREED™ CIDR® (progesterone intravaginal insert) Cattle Insert for synchronization of estrus in suckled beef cows and replacement beef and dairy heifers, advancement of first postparturial estrus in suckled beef cows, and advancement of first postparturial estrus in beef heifers.
 • Administer one EAZI-BREED™ CIDR Cattle Insert per animal for 7 days (for example, if administered on a Monday remove the following Monday).
 • Administer a dose of 2 mL LUTALYSE HighCon Injection (25 mg dinoprost) by intramuscular or subcutaneous injection 1 day prior to EAZI-BREED CIDR Cattle Insert removal, on Day 6 of the 7 day administration period.
 • Observe animals for signs of estrus on Days 1 to 3 after removal of the EAZI-BREED CIDR Cattle Insert and inseminate animals about 12 hours after onset of estrus.

 CLINICAL PATHOLOGY
 • General Biologic Activity: Prostaglandins occur in nearly all mammalian tissues. Prostaglandins, especially PGE2 and PGF2a, have been shown, in certain species, to 1) increase at time of parturition in amniotic fluid, maternal placenta, myometrium, and blood; 2) stimulate myometrial activity; and 3) to induce either abortion or parturition. Prostaglandins, especially PGE2a, have been shown to 1) increase
in the uterus and blood to levels similar to levels achieved by exogenous administration which elicited luteolysis; 2) be capable of cross-reacting from the uterine vein to the ovarian artery (sheep); 3) be related to IUD induced luteal regression (sheep), and 4) be capable of regressing the corpus luteum of most mammalian species studied to date. Prostaglandins have been reported to result in release of putatively toxic trypsin-like enzymes. Data suggest prostaglandins, especially PGE₁ and PGF₂α, may be involved in the process of ovulation and gamete transport. Also PGF₂α has been reported to cause increase in blood pressure, bronchoconstriction, and smooth muscle stimulation in certain species.

Metabolism: A number of metabolism studies have been done in laboratory animals. The metabolism of tritium labeled dinoprost (4H PGF₂α) in the rat and in the monkey was similar. Although quantitative differences were observed, qualitatively similar metabolites were produced. A study demonstrated that equimolar doses of 4H PGF₂α alpha Tham and 4H PGF₂α free acid administered intravenously to rats demonstrated no significant differences in blood concentration of dinoprost. An interesting observation in the above study was that the radioactive dose of 4H PGF₂ α rapidly distributed in tissues and dissipated in tissues with almost the same curve as it did in the serum. The half-life of dinoprost in bovine blood has been reported to be on the order of minutes. A complete study on the distribution of decline of 4H PGF₂ α Tham in the tissue of rats was well correlated with the work done in the cow. Cattle serum collected during 24 hours after doses of 0 to 250 mg dinoprost have been assayed by RIA for dinoprost and the 15-keto metabolites. These data support previous reports that dinoprost has a half-life of minutes. Dinoprost is a natural prostaglandin. All systems associated with dinoprost metabolism exist in the body; therefore, no new metabolic, transport, excretory, binding or other systems need be established by the body to metabolize injected dinoprost.

Relative Bioavailability Study: The requirement for substantial evidence of effectiveness was fulfilled by a pharmacokinetic study comparing the relative bioavailability of the subcutaneous (SC) administration of 25 mg of LUTALYSE HighCon Injection (1.25 mg dinoprost/mL) to the approved intramuscular (IM) administration of 25 mg of LUTALYSE Injection (5 mg dinoprost/mL). The effectiveness data for LUTALYSE Injection at doses of 25 and 35 mg IM were used to support an equivalence study comparing the relative bioavailability of the SC administration of 25 mg of LUTALYSE HighCon SC, with dinoprost metabolism exist in the body; therefore, no new metabolic, transport, excretory, binding or other systems need be established by the body to metabolize injected dinoprost.

Injection Site Safety Summary: Eight non-lactating, non-pregnant dairy cows were injected with saline and eight animals were injected with LUTALYSE HighCon Injection (12.5 mg dinoprost/mL) @ 25 mg/animal twice, at an interval of ten days. The first injection was administered in the left neck on Day 0 and the second injection was administered in the right neck on Day 10. Clinical observations were conducted on Days -14, -1, 0, 1, 2, 10, and 11, and injection site observations were conducted on all animals once on Days -14,-1, and once daily from Day 0 until Day 11. Animals were euthanized on Day 11. There were no abnormal clinical observations or general health observations related to drug administration during the conduct of the study. Injection site observations revealed no findings of erythema, heat, or sensitivity. No hardness was noted at the injection sites in any control animal post treatment administration. In the treated group, two animals had hardness noted on the right neck on Day 11. The hardness was probably a result of a test article administration at that site on the previous day. No abnormal skin appearance was noted in any animal during this study. Swelling with a volume of 3.53 cm³ was observed on Day 11 in the right neck in one treated animal. At necropsy discoloration (variations of dark red, tan, gray, or yellow mottled) in the subcutaneous tissue was observed at all dinoprost injection sites. More discolored subcutaneous tissue was present at the Day 10 injection sites compared to the Day 0 injection sites. There was no discoloration observed in the deep muscle tissue. In summary, this study demonstrated that subcutaneous injection of LUTALYSE HighCon was well tolerated when injected subcutaneously into dairy cows at a dose of 25 mg dinoprost/cow twice at an interval of 10 days.

Effectiveness

The requirement for substantial evidence of effectiveness was fulfilled by a pharmacokinetic study comparing the relative bioavailability of the SC administration of 25 mg of LUTALYSE HighCon (1.25 mg dinoprost/mL) to the approved IM administration of 25 mg of LUTALYSE Injection (5 mg dinoprost/mL) (see CLINICAL PHARMACOLOGY, Relative Bioavailability Study). The study demonstrated the equivalence of the SC administration of 25 mg of LUTALYSE HighCon to the IM administration of 25 mg of LUTALYSE Injection. Therefore, the effectiveness studies conducted with LUTALYSE Injection support the effectiveness of LUTALYSE HighCon Injection.

For Treatment of Pyometra (chronic endometritis) in Cattle: In studies conducted with LUTALYSE Injection, pyometra was defined as presence of a corpus luteum in the ovary and uterine horns containing fluid. Cervicitis was defined as a conceptus based on palpation per rectum. Return to normal was defined as evacuation of fluid and return of the uterine horn size to 40mm or less based on palpation per rectum at 14 and 28 days. Most cattle that recovered in response to LUTALYSE Injection recovered within 14 days after injection. After 14 days, recovery rate of treated cattle was no different than that of non-treated cattle.

For Abortion in Beef Cows, Beef Heifers and Replacement Dairy Heifers: Commercial cattle were palpated per rectum for pregnancy in six feedlots. The percent of pregnant cattle in each feedlot less than 100 days of gestation ranged between 26 and 84, 80% or more of the pregnant cattle were less than 150 days of gestation. The abortion rates following injection of LUTALYSE Injection increased with increasing doses up to about 25 mg. As examples, the abortion rates, over 7 feedlots on the dose titration study, were 22%, 50%, 71%, 90% and 78% for cattle up to 100 days of gestation when injected IM with LUTALYSE Injection doses of 0.1 (5 mg), 2 (10 mg), 4 (20 mg) and 8 (40 mg) mL, respectively. The statistical predicted relative abortion rate based on the dose titration data was about 93% for the 5 mL (25 mg) LUTALYSE Injection dose for cattle injected up to 100 days of gestation.

For use with FACTREL® (gonadorelin injection) Injection to synchronize estrous cycles to allow fixed-time artificial insemination (FTAI) in lactating dairy cows: For a full description of the studies conducted for the use of FACTREL Injection and LUTALYSE Injection, please refer to the labeling for FACTREL Injection.